Fall 2015 Math 245 Exam 1 Solutions

Problem 1. Carefully define each of the following terms:
a. contrapositive

The contrapositive of conditional proposition $p \rightarrow q$ is $(\sim q) \rightarrow(\sim p)$.
b. valid

An argument/proof is valid if the conclusion must be true if all the premises are true.
c. tautology

A (compound) proposition is a tautology if it is true regardless of the truth values of any other (constituent) propositions.
d. vacuous proof

A vacuous proof proves the implication $p \rightarrow q$ by proving that $\sim p$ holds.
e. proof by contradiction

A proof by contradiction takes as additional hypothesis the negation of the desired conclusion, and derives a contradiction.

Problem 2. Define the terms "proposition" and "predicate", and explain the difference.
A proposition is a statement that must be true or false, but not both or neither. A predicate is a collection of propositions indexed by one or more variables. A predicate is not a proposition, because it may be true for certain values of its variable(s) and false for others.

Problem 3. Write the negation of the proposition $\forall x \in \mathbb{R}, \exists y \in \mathbb{Z}, \forall z \in \mathbb{R}, x>z y$, and simplify your result to eliminate \sim.
$\sim \forall x \in \mathbb{R}, \exists y \in \mathbb{Z}, \forall z \in \mathbb{R}, x>z y \quad \equiv \quad \exists x \in \mathbb{R}, \forall y \in \mathbb{Z}, \exists z \in \mathbb{R}, x \leq z y$.
Problem 4. Construct the circuit corresponding to the Boolean expression $(p \wedge q) \vee \sim r$.

Problem 5. Write the converse of the inverse of the contrapositive of $p \rightarrow(q \vee r)$.
Contrapositive: $\sim(q \vee r) \rightarrow \sim p$. Inverse of the contrapositive: $(q \vee r) \rightarrow p$.
Converse of the inverse of the contrapositive: $p \rightarrow(q \vee r)$.

Problem 6. Use a truth table to determine whether $(p \oplus q) \vee r \equiv p \oplus(q \vee r)$.

p	q	r	$p \oplus q$	$(p \oplus q) \vee r$	$q \vee r$	$p \oplus(q \vee r)$
T	T	T	F	T	T	F
T	T	F	F	F	T	F
T	F	T	T	T	T	F
T	F	F	T	T	F	T
F	T	T	T	T	T	T
F	T	F	T	T	T	T
F	F	T	F	T	T	T
F	F	F	F	F	F	F

The two propositions are not equivalent, because in two of the eight rows, the truth values disagree in the fifth and seventh columns (circled).

Problem 7. Disprove the following statement: $\forall x \in \mathbb{R}$, if $x>0$ then $\frac{1}{x+2}=\frac{1}{x}+\frac{1}{2}$.
We need a counterexample, some specific $x \in \mathbb{R}$ such that $x>0$ and $\frac{1}{x+2} \neq \frac{1}{x}+\frac{1}{2}$. Fortunately we don't need to look far, as every choice we might make will work. For example, $x=1$ has $1>0$ and $\frac{1}{1+2}=\frac{1}{3} \neq 1.5=\frac{1}{1}+\frac{1}{2}$.

Problem 8. Fill in the missing justifications, including line numbers, for the following proof.

1. $(p \vee q) \rightarrow r \quad$ hypothesis
2. $\quad \sim q \rightarrow c \quad$ hypothesis
3. p hypothesis
4. $\quad q \quad$ Rule of contradiction on 2.
5. $\quad p \vee q \quad$ Disjunctive addition on 4.
6. r Modus ponens on 1,5.
7. $\quad \therefore p \wedge r \quad$ Conjunctive addition on 3,6 .

Problem 9. Carefully state the definition of $\lceil x\rceil$, and find some $y \in \mathbb{R}$ with $\lceil y\rceil>y^{2}$.
For $x \in \mathbb{R}$, we define $\lceil x\rceil=\min \{n \in \mathbb{Z}: n \geq x\}$. Alternatively, in words, $\lceil x\rceil$ is the smallest integer that is greater than or equal to the real number x. It's a bit tricky to find y, as those $y \leq 0, y=1$, or $y \geq \sqrt{2}$ all fail to satisfy the desired condition. However all other y work. For example, take $y=0.5$. We have $\lceil y\rceil=1>0.25=y^{2}$.

Problem 10. Use mathematical induction to prove that, for all natural $n \geq 2$,

$$
2+3+\cdots+n=\frac{(n-1)(n+2)}{2}
$$

Base case: $n=2$. The left hand side has one summand, 2 , and the right hand side is $\frac{(2-1)(2+2)}{2}=2$.
Alternative base case: We can actually use as base case $n=1$, in which case the LHS has no summands, so is 0 , while the right hand side is $\frac{(1-1)(2+2)}{2}=0$.
Inductive case: Assume as inductive hypothesis that $2+3+\cdots+n=\frac{(n-1)(n+2)}{2}$. Add $(n+1)$ to both sides, getting $2+3+\cdots+n+(n+1)=\frac{(n-1)(n+2)}{2}+\frac{2 n+2}{2}=\frac{n^{2}+3 n}{2}=\frac{n(n+3)}{2}$.
Alternative inductive case: We may instead assume $2+3+\cdots+(n-1)=\frac{(n-2)(n+1)}{2}$ and add n to both sides, which after algebra gives $2+3+\cdots+n=\frac{(n-1)(n+2)}{2}$.

