
Fall 2015 Math 245 Exam 1 Solutions

Problem 1. Carefully define each of the following terms:
a. contrapositive

The contrapositive of conditional proposition p→ q is (∼ q)→ (∼ p).

b. valid
An argument/proof is valid if the conclusion must be true if all the premises are true.

c. tautology
A (compound) proposition is a tautology if it is true regardless of the truth values of
any other (constituent) propositions.

d. vacuous proof
A vacuous proof proves the implication p→ q by proving that ∼ p holds.

e. proof by contradiction
A proof by contradiction takes as additional hypothesis the negation of the desired
conclusion, and derives a contradiction.

Problem 2. Define the terms “proposition” and “predicate”, and explain the difference.
A proposition is a statement that must be true or false, but not both or neither. A pred-
icate is a collection of propositions indexed by one or more variables. A predicate is not a
proposition, because it may be true for certain values of its variable(s) and false for others.

Problem 3. Write the negation of the proposition ∀x ∈ R,∃y ∈ Z, ∀z ∈ R, x > zy, and simplify
your result to eliminate ∼.
∼ ∀x ∈ R, ∃y ∈ Z, ∀z ∈ R, x > zy ≡ ∃x ∈ R,∀y ∈ Z,∃z ∈ R, x ≤ zy.

Problem 4. Construct the circuit corresponding to the Boolean expression (p ∧ q)∨ ∼ r.

p

q

r

(p ∧ q)∨ ∼ r

Problem 5. Write the converse of the inverse of the contrapositive of p→ (q ∨ r).

Contrapositive: ∼ (q ∨ r)→∼ p. Inverse of the contrapositive: (q ∨ r)→ p.
Converse of the inverse of the contrapositive: p→ (q ∨ r).
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Problem 6. Use a truth table to determine whether (p⊕ q) ∨ r ≡ p⊕ (q ∨ r).

p q r p⊕ q (p⊕ q) ∨ r q ∨ r p⊕ (q ∨ r)
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The two propositions are not equivalent, because in two of the eight rows, the truth values
disagree in the fifth and seventh columns (circled).

Problem 7. Disprove the following statement: ∀x ∈ R, if x > 0 then 1
x+2 = 1

x + 1
2 .

We need a counterexample, some specific x ∈ R such that x > 0 and 1
x+2 6=

1
x + 1

2 . Fortunately
we don’t need to look far, as every choice we might make will work. For example, x = 1 has
1 > 0 and 1

1+2 = 1
3 6= 1.5 = 1

1 + 1
2 .

Problem 8. Fill in the missing justifications, including line numbers, for the following proof.
1. (p ∨ q)→ r hypothesis
2. ∼ q → c hypothesis
3. p hypothesis

4. q Rule of contradiction on 2.

5. p ∨ q Disjunctive addition on 4.

6. r Modus ponens on 1,5.

7. ∴ p ∧ r Conjunctive addition on 3,6.

Problem 9. Carefully state the definition of dxe, and find some y ∈ R with dye > y2.

For x ∈ R, we define dxe = min{n ∈ Z : n ≥ x}. Alternatively, in words, dxe is the smallest
integer that is greater than or equal to the real number x. It’s a bit tricky to find y, as those
y ≤ 0, y = 1, or y ≥

√
2 all fail to satisfy the desired condition. However all other y work.

For example, take y = 0.5. We have dye = 1 > 0.25 = y2.

Problem 10. Use mathematical induction to prove that, for all natural n ≥ 2,

2 + 3 + · · ·+ n =
(n− 1)(n + 2)

2
.

Base case: n = 2. The left hand side has one summand, 2, and the right hand side is
(2−1)(2+2)

2 = 2.
Alternative base case: We can actually use as base case n = 1, in which case the LHS has no
summands, so is 0, while the right hand side is (1−1)(2+2)

2 = 0.

Inductive case: Assume as inductive hypothesis that 2+3+ · · ·+n = (n−1)(n+2)
2 . Add (n+1)

to both sides, getting 2 + 3 + · · ·+ n + (n + 1) = (n−1)(n+2)
2 + 2n+2

2 = n2+3n
2 = n(n+3)

2 .

Alternative inductive case: We may instead assume 2 + 3 + · · · + (n − 1) = (n−2)(n+1)
2 and

add n to both sides, which after algebra gives 2 + 3 + · · ·+ n = (n−1)(n+2)
2 .
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