Fall 2015 Math 245 Exam 1 Solutions

Problem 1. Carefully define each of the following terms:

- a. contrapositive
 - The contrapositive of conditional proposition $p \to q$ is $(\sim q) \to (\sim p)$.
- b. valid

An argument/proof is valid if the conclusion must be true if all the premises are true.

c. tautology

A (compound) proposition is a **tautology** if it is true regardless of the truth values of any other (constituent) propositions.

d. vacuous proof

A vacuous proof proves the implication $p \to q$ by proving that $\sim p$ holds.

e. proof by contradiction

A **proof by contradiction** takes as additional hypothesis the negation of the desired conclusion, and derives a contradiction.

Problem 2. Define the terms "proposition" and "predicate", and explain the difference. A **proposition** is a statement that must be true or false, but not both or neither. A **predicate** is a collection of propositions indexed by one or more variables. A predicate is not a proposition, because it may be true for certain values of its variable(s) and false for others.

Problem 3. Write the negation of the proposition $\forall x \in \mathbb{R}, \exists y \in \mathbb{Z}, \forall z \in \mathbb{R}, x > zy$, and simplify your result to eliminate \sim .

 $\sim \forall x \in \mathbb{R}, \exists y \in \mathbb{Z}, \forall z \in \mathbb{R}, \ x > zy \quad \equiv \quad \exists x \in \mathbb{R}, \forall y \in \mathbb{Z}, \exists z \in \mathbb{R}, \ x \le zy.$

Problem 4. Construct the circuit corresponding to the Boolean expression $(p \land q) \lor \sim r$.

Problem 5. Write the converse of the inverse of the contrapositive of $p \to (q \lor r)$. Contrapositive: $\sim (q \lor r) \to \sim p$. Inverse of the contrapositive: $(q \lor r) \to p$. Converse of the inverse of the contrapositive: $p \to (q \lor r)$.

p	q	r	$p\oplus q$	$(p\oplus q)ee r$	$q \vee r$	$p\oplus (q\vee r)$
Т	Т	Т	F	(T)	Т	F
Т	Т	F	F	$\widetilde{\mathrm{F}}$	Т	F
Т	F	Т	Т	(T)	Т	F
Т	\mathbf{F}	\mathbf{F}	Т	$\overline{\mathrm{T}}$	F	T
F	Т	Т	Т	Т	Т	Т
F	Т	\mathbf{F}	Т	Т	Т	Т
F	\mathbf{F}	Т	\mathbf{F}	Т	Т	Т
F	F	F	F	F	F	F

Problem 6. Use a truth table to determine whether $(p \oplus q) \lor r \equiv p \oplus (q \lor r)$.

The two propositions are *not* equivalent, because in two of the eight rows, the truth values disagree in the fifth and seventh columns (circled).

Problem 7. Disprove the following statement: $\forall x \in \mathbb{R}$, if x > 0 then $\frac{1}{x+2} = \frac{1}{x} + \frac{1}{2}$.

We need a counterexample, some specific $x \in \mathbb{R}$ such that x > 0 and $\frac{1}{x+2} \neq \frac{1}{x} + \frac{1}{2}$. Fortunately we don't need to look far, as every choice we might make will work. For example, x = 1 has 1 > 0 and $\frac{1}{1+2} = \frac{1}{3} \neq 1.5 = \frac{1}{1} + \frac{1}{2}$.

Problem 8. Fill in the missing justifications, including line numbers, for the following proof.

1.	$(p \lor q) \to r$	hypothesis	
2.	$\sim q \rightarrow c$	hypothesis	
3.	p	hypothesis	
4.	q	Rule of contradiction on 2.	
5.	$p \vee q$	Disjunctive addition on 4.	
6.	r	Modus ponens on 1,5.	
7.	$\therefore p \wedge r$	Conjunctive addition on 3,6.	

Problem 9. Carefully state the definition of $\lceil x \rceil$, and find some $y \in \mathbb{R}$ with $\lceil y \rceil > y^2$. For $x \in \mathbb{R}$, we define $[x] = \min\{n \in \mathbb{Z} : n \ge x\}$. Alternatively, in words, [x] is the smallest integer that is greater than or equal to the real number x. It's a bit tricky to find y, as those $y \leq 0, y = 1$, or $y \geq \sqrt{2}$ all fail to satisfy the desired condition. However all other y work. For example, take y = 0.5. We have $[y] = 1 > 0.25 = y^2$.

Problem 10. Use mathematical induction to prove that, for all natural $n \ge 2$,

$$2+3+\dots+n = \frac{(n-1)(n+2)}{2}$$

Base case: n = 2. The left hand side has one summand, 2, and the right hand side is $\frac{(2-1)(2+2)}{2} = 2.$

Alternative base case: We can actually use as base case n = 1, in which case the LHS has no summands, so is 0, while the right hand side is $\frac{(1-1)(2+2)}{2} = 0$.

Inductive case: Assume as inductive hypothesis that $2+3+\cdots+n=\frac{(n-1)(n+2)}{2}$. Add (n+1)

to both sides, getting $2 + 3 + \dots + n + (n+1) = \frac{(n-1)(n+2)}{2} + \frac{2n+2}{2} = \frac{n^2+3n}{2} = \frac{n(n+3)}{2}$. Alternative inductive case: We may instead assume $2 + 3 + \dots + (n-1) = \frac{(n-2)(n+1)}{2}$ and add n to both sides, which after algebra gives $2 + 3 + \cdots + n = \frac{(n-1)(n+2)}{2}$