Fall 2015 Math 245 Exam 1 Solutions

Problem 1. Carefully define each of the following terms:
a. contrapositive

The contrapositive of conditional proposition p — ¢ is (~ q) — (~ p).

b. valid
An argument/proof is valid if the conclusion must be true if all the premises are true.

c. tautology
A (compound) proposition is a tautology if it is true regardless of the truth values of
any other (constituent) propositions.

d. vacuous proof
A vacuous proof proves the implication p — ¢ by proving that ~ p holds.

e. proof by contradiction
A proof by contradiction takes as additional hypothesis the negation of the desired
conclusion, and derives a contradiction.

Problem 2. Define the terms “proposition” and “predicate”, and explain the difference.

A proposition is a statement that must be true or false, but not both or neither. A pred-
icate is a collection of propositions indexed by one or more variables. A predicate is not a
proposition, because it may be true for certain values of its variable(s) and false for others.

Problem 3. Write the negation of the proposition Vr € R, 3y € Z,Vz € R, = > zy, and simplify
your result to eliminate ~.
~VreR JyeZVzeR, z>2zy = dreRVyeZ dzeR, z<zy.

Problem 4. Construct the circuit corresponding to the Boolean expression (p A q)V ~ r.
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Problem 5. Write the converse of the inverse of the contrapositive of p — (¢ V 7).

' ‘Dﬁ
Contrapositive: ~ (qV r) =~ p. Inverse of the contrapositive: (¢ V r) — p.

Converse of the inverse of the contrapositive: p — (¢ V r).




Problem 6. Use a truth table to determine whether (p@® q) Vr=p® (¢ V r).
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The two propositions are not equivalent, because in two of the eight rows, the truth values
disagree in the fifth and seventh columns (circled).

Problem 7. Disprove the following statement: Va € R, if x > 0 then I—iQ = % + %

We need a counterexample, some specific x € R such that z > 0 and x+_2 = %—i— % Fortunately
we don’t need to look far, as every choice we might make will work. For example, z = 1 has
1>0and 75 =3 #15=1+1.

Problem 8. Fill in the missing justifications, including line numbers, for the following proof.

1. (pVq) —r hypothesis

2. ~ q — ¢ hypothesis

3. p hypothesis

4. q Rule of contradiction on 2.
5. pV q Disjunctive addition on 4.

6. r  Modus ponens on 1,5.

7. o.pAr  Conjunctive addition on 3,6.

Problem 9. Carefully state the definition of [z], and find some y € R with [y] > 3.

For z € R, we define [z] = min{n € Z : n > x}. Alternatively, in words, [x] is the smallest
integer that is greater than or equal to the real number x. It’s a bit tricky to find y, as those
y <0,y =1, or y > /2 all fail to satisfy the desired condition. However all other y work.
For example, take y = 0.5. We have [y] = 1 > 0.25 = ¢

Problem 10. Use mathematical induction to prove that, for all natural n > 2,
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2+3+."+n:(n)2(n+)'

Base case: m = 2. The left hand side has one summand, 2, and the right hand side is
@=D(E+2) _,
5 =

Alternative base case: We can actually use as base case n = 1, in which case the LHS has no
summands, so is 0, while the right hand side is w = 0.

Inductive case: Assume as inductive hypothesis that 2+3+---+n = ("_1)2& Add (n+1)
to both sides, getting 2 +3+---+n+ (n+1) = ("_1)2(n+2) + 2nt2 — ”2‘53” = "(n2+3).
Alternative inductive case: We may instead assume 2 +3+ -+ (n — 1) = %2("” and
add n to both sides, which after algebra gives 2+3+---+n = wfﬂr?)




